From 1 - 10 / 15
  • Radio-loud quasars at high redshift (z ≥ 4) are rare objects in the universe and rarely observed with Very Long Baseline Interferometry (VLBI). But some of them have flux density sufficiently high for monitoring of their apparent position. The instability of the astrometric positions could be linked to the astrophysical process in the jetted active galactic nuclei in the early universe. Regular observations of the high-redshift quasars are used for estimating their apparent proper motion over several years. We have undertaken regular VLBI observations of several high-redshift quasars at 2.3 GHz (S band) and 8.4 GHz (X band) with a network of five radio telescopes: 40 m Yebes (Spain), 25 m Sheshan (China), and three 32 m telescopes of the Quasar VLBI Network (Russia)—Svetloe, Zelenchukskaya, and Badary. Additional facilities joined this network occasionally. The sources have also been observed in three sessions with the European VLBI Network in 2018–2019 and one Long Baseline Array experiment in 2018. In addition, several experiments conducted with the Very Long Baseline Array in 2017–2018 were used to improve the time sampling and the statistics. Based on these 37 astrometric VLBI experiments between 2017 and 2021, we estimated the apparent proper motions of four quasars: 0901+697, 1428+422, 1508+572, and 2101+600. Citation: Oleg Titov <i>et al </i>2023 <i>AJ</i><b> 165</b> 69

  • <div>The Australian Bureau of Meteorology (BoM), Geoscience Australia (GA) and the Pacific Community (SPC) work together on the Australian Aid funded Pacific Sea Level and Geodetic Monitoring Project (PSLGMP). The project is focused on determining the long-term variation in sea level through observation and analysis of changes in the height of the land (using Global Navigation Satellite System (GNSS) data) and changes in the sea level (using tide gauges managed and operated by the BoM. It is the role of GA and SPC to provide information about ‘absolute’ movement of the tide gauge (managed by BoM) using GNSS to continuously monitor land motion and using levelling (SPC) to measure the height difference between the tide gauge and GNSS pillar every 18 months. </div><div>Land movement caused by earthquakes, subsidence and surface uplift have an important effect on sea level observations at tide gauges. For example, a tide gauge connected to a pier which is subsiding at a rate of 5 mm per year would be observed as a rate of 5 mm per year of sea level rise at the tide gauge. Because of this, it is important to measure, and account for, the movement of land when measuring ‘absolute’ sea level variation - the change in the sea level relative to the centre of the Earth. Relative sea level variation on the other hand is measured relative to local buildings and landmass around the coastline.</div><div>Geoscience Australia’s work enables more accurate 'absolute' sea level estimates by providing observations of land motion which can be accounted for by BoM when analysing the tide gauge data.</div><div><br></div>

  • <div>The integrity and strengths of multi-technique terrestrial reference frames such as ITRF2020 depend on the precisely measured and expressed local tie connections between space geodetic observing systems at co-located observatories. A local tie survey was conducted at the Mount Pleasant Geodetic observatory, in Hobart in March 2023. The aim of the survey was to precisely measure the local terrestrial connections between the space-based geodetic observing systems co-located at the observatory, which includes a permanent International GNSS Service (IGS) site (HOB2&nbsp;A 50116M004), and Very Long Baseline Interferometry (VLBI) radio telescopes. In particular, this report documents the indirect measurement of the VLBI invariant reference point for both the 12m (7374&nbsp;A 50116S007) and 26m (7242 A 50116S002) radio telescopes at the site. Geoscience Australia has routinely performed classical terrestrial surveys at Mount Pleasant since 1995. A high precision survey was conducted between the survey pillars surrounding the observatory. These survey pillars were monitored to ensure their stability as part of a consistent, stable terrestrial network from which local tie connections were made to the VLBI and GNSS systems. The relationship between points of interest included the millimetre level accurate connections and their associated variance covariance matrix.</div><div><br></div>

  • <div>The lithology, geochemistry, and architecture of the continental lithospheric mantle (CLM) underlying the Kimberley Craton of north-western Australia has been constrained using pressure-temperature estimates and mineral compositions for &gt;5,000 newly analyzed and published garnet and chrome (Cr) diopside mantle xenocrysts from 25 kimberlites and lamproites of Mesoproterozoic to Miocene age. Single-grain Cr diopside paleogeotherms define lithospheric thicknesses of 200–250 km and fall along conductive geotherms corresponding to a surface heat flow of 37–40 mW/m 2. Similar geotherms derived from Miocene and Mesoproterozoic intrusions indicate that the lithospheric architecture and thermal state of the CLM has remained stable since at least 1,000 Ma. The chemistry of xenocrysts defines a layered lithosphere with lithological and geochemical domains in the shallow (&lt;100 km) and deep (&gt;150 km) CLM, separated by a diopside-depleted and seismically slow mid-lithosphere discontinuity (100–150 km). The shallow CLM is comprised of Cr diopsides derived from depleted garnet-poor and spinel-bearing lherzolite that has been weakly metasomatized. This layer may represent an early (Meso to Neoarchean?) nucleus of the craton. The deep CLM is comprised of high Cr2O3 garnet lherzolite with lesser harzburgite, and eclogite. The peridotite components are inferred to have formed as residues of polybaric partial mantle melting in the Archean, whereas eclogite likely represents former oceanic crust accreted during Paleoproterozoic subduction. This deep CLM was metasomatized by H2O-rich melts derived from subducted sediments and high-temperature FeO-TiO2 melts from the asthenosphere.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z.J., et al. (2023) Mapping the Structure and Metasomatic Enrichment of the Lithospheric Mantle Beneath the Kimberley Craton, Western Australia,&nbsp;<em><i>Geochemistry, Geophysics, Geosystems</i>,</em>&nbsp;24, e2023GC011040.</div><div>https://doi.org/10.1029/2023GC011040</div>

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • <div>The Pacific Islands Applied Geoscience Commission (SOPAC) requested Geoscience Australia to compute International Terrestrial Reference Frame (ITRF) coordinates for 18 survey sites on islands in the northern Fiji archipelago from continuous geodetic GPS measurements observed from 8th July to 5th August 2008 inclusive. The GPS data was processed using version 5.0 of the Bernese GPS Software in a regional network together with selected IGS sites. The GPS solution was constrained to the ITRF2005 reference frame through adopting IGS05 coordinates on selected IGS reference sites and using the final IGS earth orientation parameters and satellite ephemerides products.</div><div>These coordinates provide the coordinate reference frame to be used to define Fiji’s claim to extended continental shelf under the provisions of Article 76 of the United Nations Convention on the Law of the Sea.</div><div><br></div>

  • <div>This record links to tarred folders with simulation files used for a study on tsunami hazards in Tongatapu (eCat 146012) - DOI: https://doi.org/10.1093/gji/ggac140. </div><div><br></div><div>Access to this data will only be available by request via datacatalogue@ga.gov.au</div><div><br></div><div>The files were created using code here: </div><div>https://github.com/GeoscienceAustralia/ptha/tree/master/misc/monte_carlo_paper_2021. </div><div><br></div><div>This code should be read to understand the structure and contents of the tar archives. The simulation files are large and for most use cases you won't need them. First check if your needs a met via code and documentation at the link above. If the git repository doesn't include links to what you need, then it may be available in these tar archives. Contents include the datasets used to setup the model and the model outputs for every scenario. While the modelling files and code were developed by GA, at the time of writing, we do not have permission to distribute some of the input datasets outside of GA (including the Tongatapu LIDAR). </div><div><br></div><div>Access to this data will only be available by request via datacatalogue@ga.gov.au</div>

  • <div>On January 15, 2022, an ongoing eruption at the Hunga volcano generated a large explosion which resulted in a globally observed tsunami and atmospheric pressure wave. This paper presents time series observations of the event from Australia including 503 mean sea level pressure (MSLP) sensors and 111 tide gauges. Data is provided in its original format, which varies between data providers, and a post-processed format with consistent file structure and time-zone. High-pass filtered variants of the data are also provided to facilitate study of the pressure wave and tsunami. For a minority of tide gauges the raw sea level data cannot be provided, due to licence restrictions, but high-pass filtered data is always provided. The data provides an important historical record of the Hunga volcano pressure wave and tsunami in Australia. It will be useful for research in atmospheric and ocean waves associated with large volcanic eruptions. <b>Citation:</b> Davies, G., Wilson, K., Hague, B. et al. Australian atmospheric pressure and sea level data during the 2022 Hunga-Tonga Hunga-Ha’apai volcano tsunami. <i>Sci Data</i> <b>11</b>, 114 (2024). https://doi.org/10.1038/s41597-024-02949-2

  • <div>The Petroleum Systems Summary database stores the compilation of the current understanding of petroleum systems information by basin across Australia. The Petroleum Systems Summary database and delivery tool provide high-level information of the current understanding of key petroleum systems for areas of interest. For example, geological studies in the Exploring for the Future (EFTF) program have included the Canning, McArthur and South Nicholson basins (Carr et al., 2016; Hashimoto et al., 2018). The database and tool aim to assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal. Standardisation of petroleum systems nomenclature establishes a framework for each basin after Bradshaw (1993) and Bradshaw et al. (1994), with the source-reservoir naming conventions adopted from Magoon and Dow (1994).&nbsp;</div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal&nbsp;(https://portal.ga.gov.au/) via the Petroleum Systems Summary Tool (Edwards et al., 2020).</div>